Matlab/Simulink Model Reducer
Context
In automotive engine control unit (ECU) software, we use global constants called variant coding constants to enable or disable specific features. These constants are part of every functional unit within the entire ECU software. Most software development for ECUs is done using tools like ASCET and sometimes Matlab/Simulink, depending on the team and the specific functional unit.
Both ASCET and Matlab/Simulink are model-based code generators. Instead of writing code manually, developers create flow diagrams by dragging and dropping basic and user-defined classes/blocks. These diagrams represent the required functionality of an ECU sub-system, and the tools generate the corresponding C code.
Each sub-system (functional unit) has its own set of variant coding constants, which enable or disable features based on the customer’s requirements. ASCET has a built-in tool called model_reducer. This tool uses a global CSV file (variant_coding.csv) containing all the variant coding constants for the entire ECU software. By referencing this CSV file, ASCET can generate a reduced version of the model to enable or disable specific feature blocks.
Problem
In Matlab/Simulink, we need to manually update each variant coding value within the Simulink data dictionary (sldd) file based on the global CSV file. This manual process is error-prone and time-consuming for developers. To address this, we can automate the task using a script.
Solution
Our script should take two input files: the variant_coding.csv file and the model.sldd file. It should then output a modified model_modified.sldd file and an updated variant_coding_modified.csv file.
Here’s a high-level overview of how to write this script in Matlab. This function takes the input CSV and sldd files and generates the required modified files.
function matlab_reducer(variant_coding_csv, model_sldd)
variant_coding_values = csv2dict(variant_coding_csv);
variant_coding_modified_values = modify_sldd(model_sldd, variant_coding_values);
write_csv(variant_coding_modified_values);
end
In the following sections, I will explain the individual components needed to achieve this outcome.
csv2dict will read the csv file and stores the values along with names in a dictionary.
function variant_coding_values = csv2dict(filename)
% Read the CSV file
data = readtable(filename, 'Format', '%s%f');
% Extract the first and second columns
keys = data.Var1;
values = data.Var2;
% Create a dictionary
variant_coding_values = containers.Map(keys, values);
end
modify_sldd function will modify the values present in the sldd file with values we read from csv file. We read the Design Data section from sldd file and then we export the values to a .mat file which is necessary to modify the values. we just search all the VCs in dictionary and grad the values and rewrite with updated values and save to a new .mat file. THis file is then used to update and save the modified sldd file.
function modified_vc_data = modify_sldd(model_sldd, variant_coding_values)
% Read the sldd file
sldd_dict = Simulink.data.dictionary.open(model_sldd);
sldd_data = getSection(sldd_dict, 'Design Data');
% Save sldd data into a .mat file
exportToFile(sldd_data, 'sldd_data.mat');
% Load VC/Vars/.. mat file
vc_data = load('sldd_data.mat');
vc_names = fieldnames(vc_data);
vc_data_new = struct();
% Create a cell array to store the output
modified_vc_data = cell(0, 3);
for i = 1:numel(vc_names)
vc_name = vc_names{i};
vc_value = vc_data.(vc_name);
% Check if the field value is of the type 'VC.Const'
if isa(vc_value, 'VC.Const')
% Check if the VC exists in variant_coding_values
if isKey(variant_coding_values, vc_name)
old_value = vc_data.(vc_name).Value;
vc_value_from_csv = variant_coding_values(vc_name);
% Change VC value as per variant_coding_values file
if strcmp(vc_data.(vc_name).DataType, 'boolean')
vc_data.(vc_name).Value = logical(vc_value_from_csv);
else
vc_data.(vc_name).Value = vc_value_from_csv;
end
vc_data_new.(vc_name) = vc_data.(vc_name);
new_value = vc_data.(vc_name).Value;
% Add the data to the modified_vc_data cell array
modified_vc_data = [modified_vc_data; {vc_name, old_value, new_value}];
end
end
end
% Modify sldd file w/ modified VC values
save('vc_data_new.mat', '-struct', 'vc_data_new')
importFromFile(sldd_data, 'vc_data_new.mat', 'existingVarsAction', 'overwrite');
sldd_dict.saveChanges();
% Close all connections to all open data dictionaries
Simulink.data.dictionary.closeAll();
end
write_csv function will just create a new csv with old and new values for all variant coding constants present in the model.
function write_csv(variant_coding_modified_values)
% Create a new CSV file with the output data
output_filename = 'variant_coding_modified.csv';
fid = fopen(output_filename, 'w');
fprintf(fid, 'variant coding Name,Old Value,New Value\n'); % Write header
% Write data to the CSV file
for i = 1:size(variant_coding_modified_values, 1)
fprintf(fid, '%s,%d,%d\n', variant_coding_modified_values{i,:});
end
fclose(fid);
end
Conclusion
Full script is available on github matlab_reducer.m
Thanks to my friend Vijeth Angadi for reviewing the draft version of this blog.